摘要:我国的石英砂选矿提纯及深加工开发起步较晚,很多行业对石英砂需求量很大,但国内优良石英砂资源相对较少,在对石英砂的质量指标有较高要求的情况下,需要经过提纯工艺,才能达到各个工业生产的要求。本文综述介绍了近年来石英砂提纯技术发展现状,介绍了几种比较有效的高纯石英砂的制备提纯方法,提纯石英砂的主要方法可以分为物理方法和化学方法两类。包括擦洗法、磁选法、浮选法、酸浸法、络合法、微生物浸出法等,通过提纯制备高纯石英砂,能缓解天然水晶资源不足,满足日益增长的高科技用硅需求的有效途径,对促进我国国民经济建设具有重要的现实意义。
石英砂是自然界常见、应用广泛的非金属矿物原料。随着国民经济和科学技术的飞速发展,石英砂的应用己不再是局限于玻璃制品、建筑材料等一些对原料质量要求不高的传统领域,更多的开始涉入高新技术产业领域,如半导体技术、薄膜材料、原子能、光纤通讯、电缆材料以及国防科技等诸多方面。应用于这些领域的石英产品的一个显著特征是其对石英砂原料质量有很严格的要求,需要经过提纯工艺,才能达到各个工业生产的要求。一般SiO2≥99.9%,杂质含量,尤其是铁杂质、铝杂质含量被限制在很低的范围。多年以来,国内外普遍选用天然水晶作原料,经过精选提纯后,满足高科技用硅的需求,但由于天然水晶价格昂贵,资源日益枯竭,使得人们不得不把视线转移到寻找水晶代用原料这个问题上。目前,在得到水晶代用原料上大致有三个途径:(1)人造水晶;(2)溶胶-凝胶法及四氧化硅气相沉淀法;(3)天然石英砂加工提纯法。
显然,前两种途径因其造价成本高、生产规模小等缺点,而无法做到真的意义上的水晶代用原料,而利用对石英砂的精选提纯制成的高纯石英砂代替水晶,不仅行之有效,而且因天然石英砂矿藏丰富、加工成本低廉和易实现规模生产等优点,受到研究单位和生产企业的广泛关注。因此,采用石英砂提纯技术,获得高纯石英砂,是满足我国高技术领域对高纯硅需求的有效途径,对促进我国国民经济发展具有重要的意义。目前提纯石英砂的主要方法可以分为物理方法和化学方法两种。
一、物理方法
物理方法主要是水洗和分级脱泥、擦洗、磁选和浮选。
1.1 水洗和分级脱泥
这种方法主要是针对含有大量粘土矿物的石英砂。因为随着石英砂颗粒变细,其中SiO2的品位随之降低,而铁质和铝质等杂质矿物的品位反而升高,所以在入选前对石英砂原矿进行水选、分级脱泥非常必要,并且效果也较为明显。它只是作为一种矿石入选前的预处理方法,应用得较早也很普遍,但对于存在于石英砂表面的薄膜铁和粘连性杂质矿物,其脱除效果尚不显著。
1.2 擦洗
擦洗是借助机械力和砂粒间的磨剥力来除去石英砂表面的薄膜铁、粘结及泥性杂质矿物和进一步擦碎未成单体的矿物集合体,擦洗可以擦碎未成单体的矿物集合体,再经过分级作业达到对原料的初步提纯效果。目前,主要有机械擦洗和超声波擦洗。影响机械擦洗法效果的主要因素是来自擦洗机的结构特点和配置形式,其次为工艺因素(主要包括擦洗时间和擦洗固体浓度)。研究表明,石英砂矿擦洗固体浓度在50%~60%之间效果好,擦洗时间原则上以初步达到产品质量要求为准。时间过长,会加大设备磨损,增加成本。
超声波擦洗是用超声波对液体中的石英颗粒进行猛烈冲击,从而使颗料表面的微量杂质或水化膜迅速地从石英颗粒表面剥落,在分散剂的作用下成为微细的悬浮物,脱离石英砂,经洗涤分离后,使石英砂纯度大大地提高。根据廖青、朱建军等的研究,水和少量分散剂的液体介质中,经超声波处理后,-0.15mm石英砂岩颗粒粉末含Fe2O3≥0.12%和SiO2≥99.42%可达到含Fe2O3≥0.01%,SiO2≥99.8%,回率在99%以上,达到光学璃用砂标准。
1.3 磁选
磁选法可以很大限度的去除石英砂颗粒内含有的杂质,以赤铁矿、褐铁矿和黑云母等为主的弱磁性杂质矿物和以磁铁矿为主的强磁性矿物。对于弱磁性杂质矿物常选用在100000e以上的强磁机,对于强磁性杂质的矿物,常采用弱磁机或者是中磁机进行磁选。一般来说,磁选次数和磁场强度对磁选除铁效果有重要影响,随磁选次数的增加,含铁量逐渐减少;而在一定的磁场强度下可除去大部分的铁质,但此后磁场强度即使提高很多,除铁率也无多大变化。另外,石英砂粒度越细,除铁效果越好,其原因是细粒石英砂中含铁杂质矿物量高的缘故。田金星在高纯石英砂的提纯工艺研究进行了实验研究,结果表明,随磁场强度的加大,杂质的脱除率上升,磁场强度达到100000e以后,杂质的脱除率增加不明显。因此适宜的磁场强度应为100000e。经磁选后,40目SiO2品位可达99.05%,Fe2O3含量为0.071;40~80目SiO2品位为99.09%,Fe2O3含量0.070%,80~140目SiO2品 位99.14%,Fe2O3含量0.067%;140~200目SiO2品位99.10%,Fe2O3含量0.069%。但是石英砂中含杂质较多时,特别是含有较多的弱磁性或非磁性的杂质时,仅采用磁选是不能提纯成高纯石英砂的。
1.4 浮选
浮选是为了除去石英砂中长石、云母等非磁性伴生杂质矿物。目前主要有有氟浮选和无氟浮选两种方法。有氟浮选是采用阳离子捕收剂和氢氟酸活化剂在酸性pH值范围内进行的。但是考虑到含氟废水对环境的严重影响,人们开始转向无氟浮选。利用石英、长石结构构成的差异,合理调配阴阳离子混合捕收剂的配比及用量,利用他们Zeta电位的不同,优先浮选出长石,实现二者的分离。有文献报道,在中性条件下,加入无氟浮选药剂,使二氧化硅微细粉体中SiO2含量从99.1%提高到99.77%左右,相应地Fe2O3含量从0.081%下降到0.023%,产率在83%~85%。这表明无氟浮选能显著改善二氧化硅微细粉体的品质。汤亚飞等采用六偏磷酸钠作分散剂和浮选调整剂,十二胺作捕收剂,可从石英微细粉料中除去铁杂质,Fe2O3含量由0.09%下降至0.02%,产率达到85%。
二、化学方法
化学方法主工是酸浸法和络合法,酸浸法是利用石英不溶于酸(HF除外),其他杂质矿物能被酸液溶解的特点,从而可以实现对石英的进一步提纯。络合法是利用石英粉在经过酸浸后,酸又能与溶液中的杂质离子形成配位化合物,使溶液中的杂质离子进一步去除。酸浸法又分为单酸浸法和混合酸浸法。酸浸法常用酸类有硫酸、盐酸、硝酸和氢氟酸。络合法常用的酸类主要是草酸和醋酸。上述酸类对石英中金属杂质矿物均有较好的去除效果。各种稀酸对Fe和Al的去除效果明显,而对Ti和Cr的去除则主要利用较浓的硫酸、王水和氢氟酸处理。影响酸处理效果的主要因素是酸浓度、温度、时间以及洗涤过程等。
2.1 单酸浸法
将一定量的石英砂置于一定浓度的酸溶液中,加热到一定温度,加热适当的时间,将酸溶液回收,石英砂经洗涤、干燥即可。四川某地的含粉砂粘土质硅藻土,用硫酸作为酸浸剂,通过对温度、硫酸浓度及液固比的研究,得出当温度为90℃,硫酸浓度为40%,液固比为10:1时,硅藻土中铁的浸出率较佳,Fe2O3的含量由3%~4%降低到0.86%,Al2O3含量也由9.55%降低到7.08%,硅藻土中SiO2的含量升高到80%以上。周永恒在对石英的酸浸提纯实验研究中,通过对氢氟酸的酸浸温度、浓度、时间的研究,结果表明:当脉石英原料粉在温度为120℃、HF与水的比例为0.4~0.5的溶液中酸浸0.5~6h,其纯度可达到中高、档石英玻璃的标准。
2.2 混合酸浸法
由于每一种酸对石英砂中杂质的去除效果不同,不同的酸混合在一起,产生协同效应,使石英砂中杂质的去除率更高,可以获得纯度更高的石英砂。将水洗后的石英砂加入到混合酸液中,在常温下,间隙搅拌浸出,一般时间为24h;若在加热的条件下,采用搅拌浸出,时间一般为2~6h,洗涤干燥即可。张嫦等利用在室温下,18% 盐酸与硅微粉1.5:1的液固比,接着再用25%硫酸,硫酸与硅微粉的液固比为2:1进行第二次酸浸,所用的酸浸时间均为12h,经两次酸浸纯化处理后的硅微粉中铁含量<60μg/g。将洗选过的石英砂按20%~80%的固体质量分数配成浆料放入装有机械搅拌器的容器中,然后加入盐酸溶液(1%~10%)和氟硅酸溶液(1%~10%),将石英砂和溶液在75~100℃温度下搅拌2~3h,然后除去料浆中的溶液,再用水清洗数次、直至清洗液pH值接近中性为止。用此法处理,可使石英砂的铁含量由0.0059%降低至0.0002%~0.005%。沈久明所用的混合酸比例为硫酸:盐酸:硝酸:氢氟酸=50%:25%:15%:10%,加热到80℃,浸出矿浆的浓度为50%~55%,其二氧化硅的含量和铁杂 质的含量达到高纯石英砂的标准(SiO2≥99.98%,Fe2O3≤0.001%)。
2.3 络合法
络合法是将一种中等强度的有机酸,与石英砂表面的杂质发生反应,且还能与反应后的杂质离子形成稳定的配位化合物,降低了杂质离子在颗粒表面的浓度,同时也防止离子在洗涤过程中产生沉淀,使石英砂中杂质含量进一步降低。Panias等将平均粒径20μm含铁量为110×10-6的石英砂,称取一定量置于草酸溶液中,在加热至80℃下,处理时间为3h,可以溶解含铁矿物,在酸性溶液中只能以Fe3+形式存在,Fe3+再与草酸形成稳定的螯合物,其除铁率在80%~100%之间,经过处理后,石英砂中含铁量低于10×10-6。湖南省浏阳市的石英砂经过草酸处理后,样品中SiO2含量由98.26%升高到99.81%,A12O3的含量由0.18%降低到0.15%,Fe2O3含量降低到0.10%。以上所用的酸均可用蒸发、凝结或其他方法达到再生、重复使用的目的。当SiO2纯度要求很高时,清洗酸液的水须是蒸馏水或去离子水,以免自来水中所含的铁等杂质对高纯SiO2造成污染。
其他方法
用微生物浸出石英砂颗粒表面的薄膜铁或浸染铁,是近来发展起来的一种除铁技术。国外研究表明,用黑曲霉、青霉、假单胞菌、多黏菌素杆菌等微生物对石英表面薄膜铁浸除时,均取得了较好的效果, 其中以黑曲霉菌浸除铁的效果佳。Fe2O3的去除率多在75%以上,精矿Fe2O3的品位低达0.007%。并且发现,用大多数细菌和霉菌预先培育的培养液浸除铁的效果会更好。
三、结语
不管是物理方法还是化学方法,在石英砂提纯的整个工艺过程中,都有不可替代的作用。在实际应用中,往往是先用物理方法作预处理,如水洗和分级脱泥、擦洗、磁选、浮选和超声波法,除去大部分的杂质,再进行化学方法即酸浸法和络合法,进一步除去石英砂中的微量杂质。但是化学方法所使用的酸液对环境有着严重的污染,这就需要我们寻求一种新的、没有污染的提纯方法。结合化学、物理、机械化学、电磁(波)化学等专业知识,研究高纯石英砂的提纯技术是今后重要的发展方向。随着经济的发展,石英砂的选矿提纯具有很重要的经济效益和社会效益。尤其是随着微电子、光电等行业的发展,高纯石英砂的优良性能是其他粉末无法替代的,市场前景很为广阔。